Positive Solutions of Fractional Differential Equation with -Laplacian Operator
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator
We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operatorD 0 φp D α 0 u t f t, u t , D 0 u t 0, 0 < t < 1, u 0 u ′ 1 0, u′′ 0 0, D 0 u t |t 0 0, where 0 < γ < 1, 2 < α < 3, 0 < ρ 1, D 0 denotes the Caputo derivative, and f : 0, 1 × 0, ∞ × R → 0, ∞ is continuous function, φp s |s|p−2...
متن کاملPositive Solutions for Three-Point Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator
We investigate the existence ofmultiple positive solutions for three-point boundary value problemof fractional differential equation with p-Laplacian operator −Dt β (φp(Dt α x))(t) = h(t)f(t, x(t)), t ∈ (0, 1), x(0) = 0,Dt γ x(1) = aDt γ x(ξ),Dt α x(0) = 0, where Dt β ,Dt α ,Dt γ are the standard Riemann-Liouville derivatives with 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α − γ − 1, ξ ∈ (0, 1) and t...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
Eigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/789836